△中,内角
的对边分别为
,已知
成等比数列,
求(1)的值; (2)设
,求
的值.
投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n年的纯利润总和(
前
年总收入 前
年的总支出 投资额72万元)
(Ⅰ)该厂从第几年开始盈利?
(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值.
“坐标法”是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究图形的几何性质的方法,它是解析几何中是基本的研究方法. 请用坐标法证明下面问题:
已知圆O的方程是,点
,P、Q是圆O上异于A的两点.证明:弦PQ是圆O直径的充分必要条件是
.
在四棱锥中,底面
是正方形,侧棱
底面
,
,点
是
的中点,作
交
于
.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的大小.
已知等差数列{},公差
,
,且
成等比数列.
(I)求{}的通项公式;
(II)设,求证:
.
在中,内角
对边分别为
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.