已知中,
,则
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求证:AG平面BDE;
(2)求:二面角GDE
B的余弦值.
已知函数(
)的最小正周期为
.
(1)求函数的单调增区间;
(2)将函数的图象向左平移
个单位,再向上平移1个单位,得到函数
的图象;若
在
上至少含有10个零点,求b的最小值.
已知函数,其中m,a均为实数.
(1)求的极值;
(2)设,若对任意的
,
恒成立,求
的最小值;
(3)设,若对任意给定的
,在区间
上总存在
,使得
成立,求
的取值范围.
设各项均为正数的数列的前n项和为Sn,已知
,且
对一切
都成立.
(1)若λ = 1,求数列的通项公式;
(2)求λ的值,使数列是等差数列.
如图,在平面直角坐标系中,已知
,
,
是椭圆
上不同的三点,
,
,
在第三象限,线段
的中点在直线
上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点
,
,
)且直线PB,PC分别交直线OA于
,
两点,证明
为定值并求出该定值.