如图所示,甲带电体固定在绝缘水平面上的O点.另一个电荷量为+q、质量为m的带电体乙,从P点由静止释放,经L运动到Q点时达到最大速度v.已知乙与水平面的动摩擦因数为μ,静电力常量为k. 求:
(1)Q处电场强度的大小
(2)P、Q两点电势差
如图所示,△ABC为一直角三棱镜的截面,其顶角θ=30°,P为垂直于直线BCD的光屏,现一宽度等于AB的单色平行光束垂直射向AB面,在屏P上形成一条宽度等于的光带,试作出光路图并求棱镜的折射率。
如图所示,空间内存在水平向右的匀强电场,在虚线MN的右侧有垂直纸面向里、磁感应强度为B的匀强磁场,一质量为m、带电荷量为+q的小颗粒自A点由静止开始运动,刚好沿直线运动至光滑绝缘的水平面C点,与水平面碰撞的瞬间小颗粒的竖直分速度立即减为零,而水平分速度不变,小颗粒运动至D处刚好离开水平面,然后沿图示曲线DP轨迹运动,AC与水平面夹角α=30°,重力加速度为g,求:
(1)匀强电场的场强E;
(2)AD之间的水平距离d;
(3)已知小颗粒在轨迹DP上某处的最大速度为vm,该处轨迹的曲率半径是距水平面高度的k倍,则该处的高度为多大?
在半径R=5000 km的某星球表面,宇航员做了如下实验,实验装置如图甲所示.竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球,从轨道AB上高H处的某点静止滑下,用压力传感器测出小球经过C点时对轨道的压力F ,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示.求:
(1)圆轨道的半径及星球表面的重力加速度.
(2)该星球的第一宇宙速度.
如图所示,长为L的木板A静止在光滑的水平桌面上,A的左端上方放有小物体B(可视为质点),一端连在B上的细绳,绕过固定在桌子边沿的定滑轮后,另一端连在小物体C上,设法用外力使A、B静止,此时C被悬挂着。A的右端距离滑轮足够远,C距离地面足够高。已知A的质量为6m,B的质量为3m,C的质量为m。现将C物体竖直向上提高距离2L,同时撤去固定A、B的外力。再将C无初速释放,当细绳被拉直时B、C速度的大小立即变成相等,由于细绳被拉直的时间极短,此过程中重力和摩擦力的作用可以忽略不计,细绳不可伸长,且能承受足够大的拉力。最后发现B在A上相对A滑行的最大距离为。细绳始终在滑轮上,不计滑轮与细绳之间的摩擦,计算中可认为A、B之间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2。
(1)求细绳被拉直前瞬间C物体速度的大小υ0;
(2)求细绳被拉直后瞬间B、C速度的大小υ;
(3)在题目所述情景中,只改变C物体的质量,可以使B从A上滑下来。
设C的质量为km,求k至少为多大?
如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R。以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场。D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场。粒子在s1处的速度和粒子所受的重力均不计。
(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;
(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;
(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值。