如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,
(1)求证:△BCE≌△DCF;
(2)若AB=21,AD=9,AC=17,求CF的长.
在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B.
(1)求∠BAO的度数;
(2)如图1,P为线段AB上一点,在AP上方以AP为斜边作等腰直角三角形APD.点Q在AD上,连结PQ,过作射线PF⊥PQ交x轴于点F,作PG⊥x轴于点G.
求证:PF=PQ ;
(3)如图2,E为线段AB上一点,在AE上方以AE为斜边作等腰直角三角形AED.若P为线段EB的中点,连接PD、PO,猜想线段PD、PO有怎样的关系?并说明理由.
在平面直角坐标系xOy中,横、纵坐标都为整数的点称为整点.已知一组正方形的四个顶点恰好落在两坐标轴上,请你观察每个正方形四条边上的整点的个数的变化规律.
回答下列问题:
(1)经过x轴上点(5,0)的正方形的四条边上的整点个数是;
(2)经过x轴上点(n,0)(n为正整数)的正方形的四条边上的整点个数记为m,则m与n之间的函数关系是.
在△ABC中,AD是△ABC的角平分线.
(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连结AF,求证:AF⊥AD;
(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4, AC=7,
求NC的长.
已知:一次函数的图象与正比例函数
的图象相交于点
A(a,1).
(1)求a的值及正比例函数的解析式;
(2)点P在坐标轴上(不与点O重合),若PA=OA,直接写出P点的坐标;
(3)直线与一次函数的图象交于点B,与正比例函数图象交于点C,若△ABC的面积记为S,求S关于m的函数关系式(写出自变量的取值范围).
阅读下列材料:
木工张师傅在加工制作家具的时候,用下面的方法在木板上画直角:
如图1,他首先在需要加工的位置画一条线段AB,接着分别以点A、点B为圆心,以大于的适当长为半径画弧,两弧相交于点C,再以C为圆心,以同样长为半径画弧交AC的延长线于点D(点D需落在木板上),连接DB.则∠ABD就是直角.
木工张师傅把上面的这种作直角的方法叫做“三弧法.
解决下列问题:
(1)利用图1就∠ABD是直角作出合理解释 (要求:先写出已知、求证,再进行证明);
(2)图2表示的一块残缺的圆形木板,请你用“三弧法”,在木板上画出一个以EF为一条直角边的直角三角形EFG(要求:尺规作图,不写作法,保留作图痕迹).