已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.
(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积
关系是: .
(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面
积关系是:______________________.并证明你的结论.
证明:
(3)运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),则图中阴影部分的面积和的最大值是 cm2.
在下面的梯形ABCD中,AD∥BC,请说出测量AD、BC之间距离的方法。
如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?
如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.
设等腰三角形顶角为α,一腰上的高线与底边所夹的角为β,是否存在α和β之间的必然关系?若存在,则把它找出来;若不存在,则说明理由。
小明是这样做的,解:不存在,因为等腰三角形的角可以是任意度数。
亲爱的同学,你认为小明的解法对吗?若不对,那么你是怎么做的,请你写出来。