如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.
(1)当点Q从B点向A点运动时(未到达A点),若△APQ ∽△ABC,求t的值;
(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.
①当直线l经过点A时,射线QP交AD边于点E,求AE的长;
②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.
已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.
如图,点在
上,
,
与
相交于点
,
,延长
到点
,使
,连结
.
(1)证明;
(2)试判断直线与
的位置关系,并给出证明.
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
某工厂根据市场需求,计划生产A、B两种型号挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,所生产两型号挖掘机可全部售出,两型号挖掘机生产成本和售价如下表:
型号 |
A |
B |
成本(万元/台) |
200 |
240 |
售价(万元/台) |
250 |
300 |
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)
我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整;
(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?
(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)