(本小题满分12分)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:
健康指数 |
2 |
1 |
0 |
﹣1 |
60岁至79岁的人数 |
120 |
133 |
32 |
15 |
80岁及以上的人数 |
9 |
18 |
14 |
9 |
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.
(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?
(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.
设{Fn}是斐波那契数列,其中F1=F2=1,Fn= Fn–1+Fn–2(n>2),其程序框图如右图所示是表示输出斐波那契数列的前20项的算法.请根据框图写一个程序。
下表提供了某厂节能降耗技术改革后生产甲产品过程中记录的产量x(t)与相应的生产能耗Y(吨标准煤)的几组对照数据:
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技改前生产100 t甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100 t甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5 + 4×3 + 5×4 + 6×4.5=66.5)
画出程序框图,用二分法求方程在(20,21)之间的近似根(精确度为0.005)
学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数最多?有多少件?
(3)经过评比,第4组和第6组分别有10件、2件作品获奖,这两组 哪 组获奖率较高?
有一个容量为50的样本,数据的分组及各组的频数如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;
[21.5,24.5),11;[24.5,27.5),10“27.5,30.5),5;
[30.5,33.5],4.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)根据频率分布直方图估计数据落在[15.5,24.5)的频率约是多少.