(本题10分)△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC、直线BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).
(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),
①试判别△DEF的形状,并说明理由;
②判断四边形ECFD的面积是否发生变化,并说明理由.
(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;
已知抛物线.
(1)该抛物线和轴的交点坐标是 ▲ ,顶点坐标是 ▲ ;
(2)选取适当的数据填入下表,并在如图的直角坐标系内描点画出该抛物线的图象;
(3)若该抛物线上两点的横坐标满足
,试比较
与
的大小.
本市某中学的一个数学兴趣小组在本校学生中开展主题为“交通安全知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 |
非常了解 |
比较了解 |
基本了解 |
不太了解 |
频数 |
40 |
120 |
36 |
4 |
频率 |
0.2 |
m |
0.18 |
0.02 |
(1)本次问卷调查取样的样本容量为___▲____,表中的值为_▲______.
(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数,并补全扇形统计图.
(3)若该校有学生人,请根据调查结果估计这些学生中“比较了解”交通安全知识的人数约为多少?
将如图所示的牌面数字分别是,
,
,
的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是奇数的概率是 ▲;
(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是的倍数的概率.
先化简,再求值:其中
.
(1)计算:| 2-
|+2
;
(2)