如图,在平面直角坐标系中,抛物线交轴于,两点,交轴于点,且.点是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若,求点的坐标;
(3)连接,求面积的最大值及此时点的坐标.
如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图形.
如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.(1) 若CP=CD,求证:△DBP是等腰三角形;(2) 在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明理由.
某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购3辆.轿车每辆7万元,面包车每辆4万元.公司投入购车的资金不超过58万元,设购买轿车为x辆,所需资金为所需资金为y万元.
(1)写出y与x的函数关系式;
(2)求出自变量x的取值范围;
(3)若公司投入资金为52万元,问轿车和面包车各购多少辆?
已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE。
求证:(1)△ABC≌△DEF;(2)GF=GC。