阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A.点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.
计算:
如图,△ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得△PMN的周长最短.(写出作法,保留作图痕迹)
如图,一条直线过点A(0,4),B(2,0),将这条直线向左平移与x轴、y轴的负半轴分别交于点C、D,使DB=DC.
(1)求直线CD的函数解析式;
(2)求△BCD的面积;
(3)在直线AB或直线CD上是否存在点P,使△PBC的面积等于△BCD的面积的2倍?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)琚租书时间x(天)之间的关系如下图所示。
(1)分别求出用租书卡和会员卡租书的金额y(元)琚租书时间x(天)之间的关系式;
(2)两种租书方式每天租书的收费分别是多少元(不含卡费)
(3)若两种租书卡使用期限均为一年(一年按365天计算),则这一年中如何选取这两种租书方式比较合算?
已知函数
(1)画出这个函数的图象;
(2)写出这个函数的图象与x轴,y轴的交点坐标
(3)求此函数的图象与坐标轴围成的三角形的面积。