在□ABOC中,AO⊥BO,且AO=BO.以AO、BO所在直线为坐标轴建立如图所示的平面直角坐标系,已知B(-6,0),直线过点C且与x轴交于点D.
(1)求点D的坐标;
(2)点E为y轴正半轴上一点,当∠BED=45°时,求直线EC的解析式;
(3)在(2)的条件下,设直线EC与x轴交于点F,ED与AC交于点G.点P从点O出发沿折线OF-FE运动,在OF上的速度是每秒2个单位,在FE上的速度是每秒个单位.在运动过程中直线PA交BE于H,设运动时间为t.当以E、H、A为顶点的三角形与△EGC相似时,求t的值.
如图,两个圆都以点为圆心,大圆的弦
交小圆于
、
两点.
求证:=
.
当时,求代数式
的值.
如图,与
均是等边三角形,连接BE、CD.请在图中找出一条与
长度相等的线段,并证明你的结论.
结论:
证明:
用公式法解一元二次方程:.
如图1,点A在x轴上,点D在y轴上,以OA、AD为边分别作等边△OAC和等边△ADE,若D(0,4),A(2,0).
(1)若∠DAC=10°,求CE的长和∠AEC的度数.
(2)如图2,若点P为x轴正半轴上一动点,点P在点A的右边,连PC,以PC为边在第一象限作等边△PCM,延长MA交y轴于N,当点P运动时.
①∠ANO的值是否发生变化?若不变,求其值,若变化,请说明理由.
②AM-AP的值是否发生变化?若不变,求其值,若变化,请说明理由.