游客
题文

读故事想问题。
在数学上也不乏“此时无声胜有声”的小故事。1903年,在纽约的一次数学报告会上,数学家科勒上了讲台,他没说一句话,知识用粉笔在黑板上写了两个算式,一个是67个2相乘减1,另一个是193707721×761838257287,并演算出结果。两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?
因为科勒解决了200年来一直没有弄清的一个问题,即67个2相乘减1的结果是不是质数?现在既然它等于另外另个数的乘积,因此证明67个2相乘再减1不是质数,而是合数。
科勒只作了一个简短的无声的报告,可这是他花了3年中全部星期天的试卷才得出的结论。在这简单算式中所蕴涵的智慧、毅力和努力,比洋洋洒洒的万言报告更具魅力。
请你用数学概念说明为什么67个2相乘再减1的结果不是质数而是合数。

科目 数学   题型 解答题   难度 困难
知识点: 整数的裂项与拆分 数的整除特征
登录免费查看答案和解析
相关试题

×+×

用我喜欢的方法计算:
13﹣4.85﹣3.15
70.9﹣1.25﹣1.75.

怎样算简便就怎样算.
6.71×0.52+4.8×0.6713.8+2.49+7.51+4.2102×4.531.7﹣0.5×0.7﹣1.65.

2.2×3.7+6.3×2.2.

简便计算.
(1)9.26﹣(4.38+2.26)(2)52×76+47×76+76(3)x99.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号