(本小题满分12分)设是定义在 上的函数,满足条件:①; ②当时,恒成立.(Ⅰ)判断在上的单调性,并加以证明;(Ⅱ)若,求满足的x的取值范围.
已知等比数列的各项均为正数,,. (Ⅰ)求数列的通项公式; (Ⅱ)设.证明:为等差数列,并求的前项和.
设函数 (Ⅰ)解不等式; (Ⅱ)若函数的解集为,求实数的取值范围
在极坐标系中,已知圆的圆心,半径 (Ⅰ)求圆的极坐标方程; (Ⅱ)若,直线的参数方程为(为参数),直线交圆于两点,求弦长的取值范围
如图,是圆的直径,、在圆上,、的延长线交直线于点、,求证: (Ⅰ)直线是圆的切线; (Ⅱ)
设函数(为常数) (Ⅰ)=2时,求的单调区间; (Ⅱ)当时,,求的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号