游客
题文

问题背景:

(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的
点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是       _____
探索延伸:
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

(1)计算:2sin60°-+()-1+(-1)2008
(2)解方程:

实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等。(共10分)

(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=38°,则∠2=°,∠3=°。
(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°。
(3)由(1)、(2),请你猜想:当两平面镜ab的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜ab的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?

从一个五边形中切去一个三角形,得到一个三角形和一个新的多边形,那么这个新的多边形的内角和等于多少度?请画图说明.

设m=2100,n=375,为了比较m与n的大小.小明想到了如下方法:m=2100=(2425=1625,即25个16相乘的积;n=375=(3325=2725,即25个27相乘的积,显然m<n,现在设x=430,y=340,请你用小明的方法比较x与y的大小

如图,把△ABC纸片沿DE折叠,使点A落在四边形BCDE内部点A′的位置.聪明的同学,你能猜出∠A′与∠1、∠2之间的数量关系吗?请找出来,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号