数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300-4)2=3002-2×300×(-4)+42=90000+2400+16=92416
老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.
已知:如图,在正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,且CE=CF.
(1)求证:△BEC≌△DFC;
(2)如果BC+DF=9,CF=3,求正方形ABCD的面积.
解方程:
已知梯形ABCD中,AD∥BC,AD=1,BC=2,sinB=,过点C在∠BCD的内部作射线交射线BA于点E,使得∠DCE=∠B.
(1)如图1,当ABCD为等腰梯形时,求AB的长;
(2)当点E与点A重合时(如图2),求AB的长;
(3)当△BCE为直角三角形时,求AB的长.
直线y=kx-6过点A(1,-4),与x轴交于点B,与y轴交于点D,以点A为顶点的抛物线经过点B,且交y轴于点C.
(1)求抛物线的表达式;
(2)如果点P在x轴上,且△ACD与△PBC相似,求点P的坐标;
(3)如果直线l与直线y=kx-6关于直线BC对称,求直线l的表达式.
梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF.
(1)求证:AE•CF=BE•DF;
(2)若点E为AB中点,求证:AD•BC=2EC2-BC2.