如图,有一池塘,要测池塘两端 、 的距离,可先在平地上取一个点 ,从点 不经过池塘可以直接到达点 和 ,连接 并延长到点 ,使 ,连接 并延长到点 ,使 ,连接 ,那么量出 的长就是 、 的距离,为什么?请结合解题过程,完成本题的证明.
证明:在 和 中,
,
,
.
解分式方程: .
计算: .
如图,抛物线 与 轴交于 、 两点,且 ,对称轴为直线 .
(1)求该抛物线的函数达式;
(2)直线 过点 且在第一象限与抛物线交于点 .当 时,求点 的坐标;
(3)点 在抛物线上与点 关于对称轴对称,点 是抛物线上一动点,令 , ,当 , 时,求 面积的最大值(可含 表示).
如图,在 中, , 是 上的一点,以 为直径的 与 相切于点 ,连接 , .
(1)求证: 平分 ;
(2)若 ,求 的值.