如图,在四边形 ABCD中,∠ B=∠ C=90°, AB> CD, AD= AB+ CD.
(1)利用尺规作∠ ADC的平分线 DE,交 BC于点 E,连接 AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,
①证明: AE⊥ DE;
②若 CD=2, AB=4,点 M, N分别是 AE, AB上的动点,求 BM+ MN的最小值.
如图,在△ABC中,∠B=∠C=30°,D是BC的中点,连接AD,求∠BAD与∠ADC的度数.
如图:在△ACB中,点D是AB边上一点,且∠ACB=∠CDA,∠CAB的平分线分别交CD、BC于点E、F.
(1)作出∠CAB的平分线AE;
(2)试说明△CEF是什么三角形?并证明你的结论.
如图,△ABC中,AD平分∠BAC,CD∥AB交AD于D.试判断△ADC的形状,并说明你的理由.
如图,在△ABC中,AB=AC,∠A=20゜,在AB、AC上分别取点E、D,使∠CBD=60°,∠BCE=50°,求∠AED的度数.
已知:如图,在△ABC中,∠C=90°,AC=BC=4,点M是边AC上一动点(与点A、C不重合),点N在边CB的延长线上,且AM=BN,连接MN交边AB于点P.
(1)求证:MP=NP;
(2)若设AM=x,BP=y,求y与x之间的函数关系式,并写出它的定义域;
(3)当△BPN是等腰三角形时,求AM的长.