(本题6分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市
场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.
(1)试用含a的代数式填空:
①涨价后,每个台灯的销售价为_______元;
②涨价后,每个台灯的利润为_______元;
③涨价后,商场的台灯平均每月的销售量为_______台.
(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
如图,正方形 的边长为1,点 为边 上一动点,连接 并将其绕点 顺时针旋转 得到 ,连接 ,以 、 为邻边作矩形 , 与 、 分别交于点 、 , 交 延长线于点 .
(1)证明:点 、 、 在同一条直线上;
(2)随着点 的移动,线段 是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连接 、 ,当 时,求 的长.
如图, 的顶点 、 分别在 轴, 轴上, ,且 的面积为8.
(1)直接写出 、 两点的坐标;
(2)过点 、 的抛物线 与 轴的另一个交点为点 .
①若 是以 为腰的等腰三角形,求此时抛物线的解析式;
②将抛物线 向下平移4个单位后,恰好与直线 只有一个交点 ,求点 的坐标.
如图,已知 内接于 , 为 的直径, ,交 的延长线于点 .
(1) 为 的中点,连接 ,求证: 是 的切线;
(2)若 ,求 的大小.
为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额 (元 与骑行时间 (时 之间的函数关系,根据图象回答下列问题:
(1)求手机支付金额 (元 与骑行时间 (时 的函数关系式;
(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.
衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内,如图,为了测量来雁塔的高度,在 处用高为1.5米的测角仪 ,测得塔顶 的仰角为 ,再向塔身前进10.4米,又测得塔顶 的仰角为 ,求来雁塔的高度.(结果精确到0.1米)