(本题6分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市
场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.
(1)试用含a的代数式填空:
①涨价后,每个台灯的销售价为_______元;
②涨价后,每个台灯的利润为_______元;
③涨价后,商场的台灯平均每月的销售量为_______台.
(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
如图,在ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G。
(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形?并加以证明。
某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D。
求证:△BEC≌△CDA
解方程:
如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从
点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C
两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设
点P的运动时间为x(秒).
(1)用含有x的代数式表示CF的长.
(2)求点F与点B重合时x的值.
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.
(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.