(本题9分)一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上)。规定:向上向右走为正,向下向左走为负。若从A到B记为:A→B(+1,+4),则从B到A记为:A→B(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)图中A→C( , ),B→C( , ), C→ (+1, );
(2)若这只甲虫的行走路线为A→D→B→C,请计算该甲虫走过的路程;
(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+1),(+3,+4),(-3,-2),(+1,-2),请在图中标出P的位置
|
;若甲虫每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?
如图所示,cm,OC是一条射线,OC⊥AB于点O,一只甲虫由点A以2cm/s的速度向B爬行,同时另一只甲虫由点O以3cm/s的速度沿OC方向爬行,是否存在这样的时刻,使两只甲虫与点O组成的三角形的面积为450cm2?若存在,请说明在什么时刻;若不存在,请说明理由。
如图,AB是⊙O的直径,∠BAC的平分线AQ交BC于点P,交⊙O于点Q。已知AC=6,∠AQC=30度。
(1)求AB的长;
(2)求点P到AB的距离。
将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。
(1)从中随机抽出一张牌,牌面数字是偶数的概率是;
(2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的两位数恰好是4的倍数的概率。
如图,A、B为是⊙O上两点,C、D分别在半径OA、OB上,若AC=BD,求证:AD=BC。
如图,四边形ABCD是边长为4的正方形,且DE=AB,△ABF是△ADE的旋转图形。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)AF的长度是多少?
(4)如果连结EF,那么△AEF是怎样的三角形?