某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须交月租费12元,另外,通话费按0.2元/min计.
(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式;
(2)某手机用户这个月通话时间为180 min,他应缴费多少元?
(3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通话多长时间?
如图,在四边形 ABCD中, AD∥ BC, AB= BC,∠ BAD=90°, AC交 BD于点 E,∠ ABD=30°, AD= ,求线段 AC和 BE的长.
(注: )
某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:
测试成绩(分) |
23 |
25 |
26 |
28 |
30 |
人数(人) |
4 |
18 |
15 |
8 |
5 |
(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;
(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)
如图,已知抛物线 y= ax 2﹣2 x+ c经过△ ABC的三个顶点,其中点 A(0,1),点 B(9,10), AC∥ x轴.
(1)求这条抛物线的解析式;
(2)求tan∠ ABC的值;
(3)若点 D为抛物线的顶点,点 E是直线 AC上一点,当△ CDE与△ ABC相似时,求点 E的坐标.
某厂商投产一种新型科技产品,每件制造成本为18元,试销过程中发现,每月销售量 y(万件)与销售单价 x(元)之间的关系可以近似地看作一次函数 y=﹣2 x+100
(1)写出每月的利润 L(万元)与销售单价 x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得312万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种科技产品的销售单价不能高于32元,如果厂商要获得每月不低于312万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
如图,在△ ABC中,∠ ABC=90°,以 AB的中点 O为圆心, OA为半径的圆交 AC于点 D, E是 BC的中点,连结 DE、 OE.
(1)判断 DE与⊙ O的位置关系,并说明理由.
(2)求证: BC 2=2 CD• OE.