(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和厢期会因供应不足使价格呈
持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①②
③
(以上三式中
均为常数,且q>l).
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);
(2)若,求出所选函数
的解析式(注:函数定义域是
.其中
表示8
月1日,表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.
(本小题满分12分)已知函数
(Ⅰ)求函数单调区间;
(Ⅱ)若,求证:当
时,
.
(本小题满分12分)班主任为了对本班学生的考试成绩进行分析,决定从全班名女同学,
名男同学中随机抽取一个容量为
的样本进行分析.随机抽出
位,他们的数学分数从小到大排序是:
、
、
、
、
、
、
、
,物理分数从小到大排序是:
、
、
、
、
、
、
、
.
(Ⅰ)若规定分以上(包括
分)为优秀,求这
位同学中恰有
位同学的数学和物理分数均为优秀的概率;
(Ⅱ)若这位同学的数学、物理分数对应如下表:
学生编号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
数学分数x |
60 |
65 |
70 |
75 |
80 |
85 |
90 |
95 |
物理分数y |
72 |
77 |
80 |
84 |
88 |
90 |
93 |
95 |
根据上表数据用变量与
的相关系数或散点图说明物理成绩
与数学成绩
之间是否具有线性相关性?如果具有线性相关性,求
与
的线性回归方程(系数精确到
);如果不具有线性相关性,请说明理由.
参考公式:相关系数;回归直线的方程是:
.
其中对应的回归估计值;
参考数据:;
(本小题满分12分)某同学参加高校自主招生门课程的考试.假设该同学第一门课程取得优秀成绩的概率为
,第二、第三门课程取得优秀成绩的概率分别为
,
,且不同课程是否取得优秀成绩相互独立.记
为该生取得优秀成绩的课程数,其分布列为
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求该生至少有门课程取得优秀成绩的概率及求
,
的值;
(Ⅱ)求该生取得优秀成绩课程门数的数学期望.
(本小题满分12分)
给出四个等式:;
;
;
.猜测第
个等式,并用数学归纳法证明.
(本小题满分12分)已知函数.
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)直线为曲线
的切线,且经过原点,求直线
的方程及切点坐标.