已知椭圆的两个焦点坐标分别是,并且经过点
.
(1)求椭圆的标准方程;
(2)若斜率为的直线
经过点
,且与椭圆交于不同的两点
,求
面积的最大值.
已知以点为圆心的圆与直线
相切,过点
的动直线与圆
相交于
两点.
(1)求圆的方程;
(2)当时,求直线
的方程.
已知命题:方程
有两个不相等的负实根,命题
:
恒成立;若
或
为真,
且
为假,求实数
的取值范围.
已知函数(
、
为常数),在
时取得极值.
(1)求实数的值;
(2)当时,求函数
的最小值;
(3)当时,试比较
与
的大小并证明.
已知是椭圆
的两个焦点,
为坐标原点,点
在椭圆上,且
,⊙
是以
为直径的圆,直线
:
与⊙
相切,并且与椭圆交于不同的两点
(1)求椭圆的标准方程;
(2)当,且满足
时,求弦长
的取值范围.
从1,2,3,4,5,6中不放回地随机抽取四个数字,记取得的四个数字之和除以4的余数为,除以3的余数为
(1)求X=2的概率;
(2)记事件为事件
,事件
为事件
,判断事件
与事件
是否相互独立,并给出证明.