(高考真题)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
(本小题满分12分)设. (Ⅰ)求的最大值及最小正周期; (Ⅱ)若锐角满足,求的值.
(本小题满分12分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD="DC=BC=1," AB="2," AB∥DC,∠BCD=900 (1)求证:PC⊥BC (2)求点A到平面PBC的距离
(本小题满分10分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,求这个多面体最长的一条棱的长.
已知函数的定义域为,对定义域内 的任意、,都有=, 且当时, . (1)求、的值;(2)求证:在上是增函数.
求函数在上的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号