如图,四棱锥
的底面
为菱形,
,侧面
是边长为2的正三角形,侧面
底面
.
(Ⅰ)设
的中点为
,求证:
平面
;
(Ⅱ)求斜线
与平面
所成角的正弦值;
(Ⅲ)在侧棱
上存在一点
,使得二面角
的大小为
,求
的值.
【2015高考山东,理16】设
.
(Ⅰ)求
的单调区间;
(Ⅱ)在锐角
中,角
的对边分别为
,若
,求
面积的最大值.
【2015高考浙江,理16】在
中,内角
,
,
所对的边分别为
,
,
,已知
,
=
.
(1)求
的值;
(2)若
的面积为7,求
的值.
【2015高考福建,理19】已知函数
的图像是由函数
的图像经如下变换得到:先将
图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移
个单位长度.
(Ⅰ)求函数
的解析式,并求其图像的对称轴方程;
(Ⅱ)已知关于
的方程
在
内有两个不同的解
.
(1)求实数m的取值范围;
(2)证明:
【2015江苏高考,15】(本小题满分14分)在
中,已知
.
(1)求
的长;
(2)求
的值.
【2015高考新课标2,理17】
中,
是
上的点,
平分
,
面积是
面积的2倍.
(Ⅰ)求
;
(Ⅱ)若
,
,求
和
的长.