如图,四棱锥的底面为菱形,,侧面是边长为2的正三角形,侧面底面.(Ⅰ)设的中点为,求证:平面;(Ⅱ)求斜线与平面所成角的正弦值;(Ⅲ)在侧棱上存在一点,使得二面角的大小为,求的值.
已知函数,,其中. (1)若是函数的极值点,求实数的值; (2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
已知 (1)当时,求函数的单调区间。 (2)当时,讨论函数的单调增区间。 (3)是否存在负实数,使,函数有最小值-3?
已知函数 (1)求曲线在点处的切线方程; (2)若关于的方程有三个不同的实根,求实数的取值范围.
设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求 (Ⅰ)求点的坐标; (Ⅱ)求动点的轨迹方程.
设函数在及时取得极值. (1)求a、b的值; (2)若对于任意的,都有成立,求c的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号