如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆:作两条切线,分别交椭圆于点,.(1)若直线,互相垂直,求圆的方程;(2)若直线,的斜率存在,并记为,,求证:;(3)试问是否为定值?若是,求出该值;若不是,说明理由.
已函数是定义在上的奇函数,在上. (1)求函数的解析式;并判断在上的单调性(不要求证明); (2)解不等式.
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为. (1)求的值; (2)求函数的单调递增区间,并求函数在上的最大值和最小值.
已知,其中,如果A∩B=B,求实数的取值范围.
已知命题:不等式的解集为R,命题:是上的增函数,若或为真命题,且为假命题,求实数的取值范围.
已知函数. (Ⅰ)求使不等式成立的的取值范围; (Ⅱ),,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号