(本小题满分12分)如图,边长为2的正方形ABCD中,E是边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点,将
及
折起,使A、C重合于
点,构成如图所示的几何体.
(Ⅰ)求证:;
(Ⅱ)若∥平面
,求三棱锥
的体积
.
(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.
(本题12分)已知函数的图像关于原点对称,并且当
时,
,试求
在
上的表达式,并画出它的图像,根据图像写出它的单调区间。
(本题12分)幂函数过点(2,4),求出
的解析式并用单调性定义证明
在
上为增函数。
(本小题12分)如图,、
分别是正四棱柱
上、下底面的中
心,是
的中点,
.
(Ⅰ)求证:∥平面
;
(Ⅱ当取何值时,
在平面
内的射影恰好为
的重心?
(本小题满分12分)
如图,在梯形中,
∥
,
,
,平面
平面
,四边形
是矩形,
,点
在线段
上.
(1)求证:平面BCF⊥平面ACFE;
(2)当为何值时,
∥平面
?证明你的结论;