某中学八年级(5)班的学生到野外进行数学活动,为了测量一池塘两端A、B之间的距离,同学们设计了如下两种方案:
(Ⅰ)如图3(1),先在平地上取一个可以直接到达A、B的点C,再连接AC、BC,并分别延长AC至D,BC至E,使,
,最后量出DE的距离就是AB的长。
(Ⅱ)如图3(2),过点B作AB的垂线BF,在BF上取C、D两点,使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离。
问:(1)方案(Ⅰ)是否可行?__________ _;
(2)方案(Ⅱ)是否可行?___________;
(3)小明说在方案(Ⅱ)中,并不一定须要,DE⊥BF,只需___________就可以了,请把小明所说的条件补上,并写出证明过程。
证明:
如图,∠C=90°,∠CAE=∠ABC,AC=2,BC=3.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)求OB的长;
如图,△ABC∽△DEC,CA=CB,且点E在AB的延长线上.
求证:(1)AE=BD;(2)△BOE∽△COD.
某市教育局对本市八年级学生体育技能情况做抽样调查,统计结果如图.
(1)这次抽样调查了多少人?
(2)已知该市八年级学生总数为4200,大约有多少人体育技能不达标?
(3)如果希望通过两个月的锻炼,使短跑不达标人数减少252,求平均每月的下降率.
如图,在菱形ABCD中,E是AB的中点,且DE⊥AB, AB=a.
(1)求∠ABC的度数;
(2)求对角线AC的长;
(3)求菱形ABCD的面积.
一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别.从中任意摸出一个球.
(1)求摸到绿球的概率;
(2)再向口袋中放入几个绿球,才能使摸到绿球的概率为?