如图所示,已知倾角为θ=45°、高为h的斜面固定在水平地面上.一小球从高为H(h<H<
h)处自由下落,与斜面做无能量损失的碰撞后水平抛出.小球自由下落的落点距斜面左侧的水平距离x满足一定条件时,小球能直接落到水平地面上.
(1)求小球落到地面上的速度大小;
(2)求要使小球做平抛运动后能直接落到水平地面上,x应满足的条件;
(3)在满足(2)的条件下,求小球运动的最长时间.
如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h。物块B质量是小球的5倍,置于粗糙的水平面上且位于O点的正下方,物块与水平面间的动摩擦因数为μ。现拉动小球使线水平伸直,小球
由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为h/16。小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t。
两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:
(1)在运动中产生的焦耳热最多是多少.
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?
如图13所示,竖直向上的匀强磁场,开始时磁感应强度B="0.5" T,并且以
="0.1" T/s在变化,水平轨道电阻不计,且不计摩擦阻力,宽0.5 m的导轨上放一电阻R0="0.1" Ω的导体棒,并用水平线通过定滑轮吊着质量M="0.2" kg的重物,轨道左端连接的电阻R="0.4" Ω,图中的l="0.8" m,求至少经过多长时间才能吊起重物.

如图12所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向里。一个质量为m、电量为q、不计重力的带正电的粒子从电场
的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。求:
(1)中间磁场区域的宽度d;
(2)带电粒子从O点开
始运动到第一次回到O点所用时间t.

发电机输出功率为100 kW,输出电压是250 V,用户需要的电压是220 V,输电线电阻为10 Ω.若输电线中因发热而损失的功率为输送功率的4%,试求:
(1)在输电线路中设置的升、降压变压器原副线圈的匝数比.
(2)画出此输电线路的示意图
.
(3)用户得到的电功率是多少?