(本小题满分14分)已知函数.
(Ⅰ)若函数的图象关于点
对称,直接写出
的值;
(Ⅱ)求函数的单调递减区间;
(Ⅲ)若在区间
上恒成立,求
的最大值.
(本小题12分)在直三棱柱(侧棱垂直底面)中,
,
.
(Ⅰ)若异面直线与
所成的角为
,求棱柱的高;
(Ⅱ)设是
的中点,
与平面
所成的角为
,当棱柱的高变化时,求
的最大值.
(本小题12分)已知等10所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为
.
(Ⅰ)如果该同学10所高校的考试都参加,试求恰有2所通过的概率;
(Ⅱ)假设该同学参加每所高校考试所需的费用均为元,该同学决定按
顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用
的分布列及数学期望.
(本小题12分)已知
(Ⅰ)若,求
使函数
为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,
∈[-π,π]的
的集合。
(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于
,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线
在
轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
(本小题13分)已知.
(I)求的单调增区间;
(II)若在定义域R内单调递增,求
的取值范围;
(III)是否存在,使
在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出
的值;若不存在,说明理由.