设不等式组所表示的平面区域为Dn,记Dn内整点的个数为an(横纵坐标均为整数的点称为整点).
(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;
(2)求数列{an}的通项公式;
(3)记数列{an}的前n项的和为Sn,试证明:对任意n∈N*,恒有<
成立.
已知函数
(1)解不等式; (2)若不等式
的解集为空集,求实数
的取值范围.
平面直角坐标系中,已知曲线,将曲线
上所有点横坐标,纵坐标分别伸长为原来的
倍和
倍后,得到曲线
(1)试写出曲线的参数方程;
(2)在曲线上求点
,使得点
到直线
的距离最大,并求距离最大值.
如图,△内接于⊙
,
,直线
切⊙
于点
,弦
,
相交于点
.
(1)求证:△≌△
;
(2)若,求
长.
已知函数(其中
为常数).
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ) 当时,设函数
的3个极值点为
,且
.证明:
.
在平面直角坐标系中,过点
的直线与抛物线
相交于A、B两点.设
,
(1)求证:为定值
(2)是否存在平行于轴的定直线被以
为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由.