平面直角坐标系中,已知曲线,将曲线
上所有点横坐标,纵坐标分别伸长为原来的
倍和
倍后,得到曲线
(1)试写出曲线的参数方程;
(2)在曲线上求点
,使得点
到直线
的距离最大,并求距离最大值.
已知函数.
(1)求函数的单调区间;
(2)若函数上是减函数,求实数a的最小值;
(3)若,使
成立,求实数a的取值范围.
已知函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数y=f(x)的解析式;
(2)函数g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有两解,求实数m的取值范围.
水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于
的近似函数关系式为
(1)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(
),同一年内哪几个月份是枯水期?
(2)求一年内该水库的最大蓄水量(取计算).
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)证明:BD⊥AA1;
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
已知的展开式的二项式系数的和比(3x-1)n的展开式的二项式系数和大992,求(2x-
)2n的展开式中,(1)二项式系数最大的项;(2)系数的绝对值最大的项.