(本小题14分)已知四面体中,
,平面
平面
,
分别为棱
和
的中点。
(1)求证:平面
;
(2)求证:;
(3)若内的点
满足
∥平面
,设点
构成集合
,试描述点集
的位置(不必说明理由)
(本小题满分12分) 已知函数满足
,对任意
,都有
,且
.
(Ⅰ)求函数的解析式;
(Ⅱ)若,使方程
成立,求实数
的取值范围.
(本小题满分12分)已知,设
的最小正周期为
.
(Ⅰ)求的单调增区间;
(Ⅱ)当时,求
的值域;
(Ⅲ)求满足且
的角
的值.
(本小题满分12分)有一种新型的洗衣液,去污速度特别快.已知每投放且
个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度
(克/升)随着时间
(分钟)变化的函数关系式近似为
,其中
.根据经验,当水中洗衣液的浓度不低于
(克/升)时,它才能起到有效去污的作用.
(Ⅰ)若投放个单位的洗衣液,
分钟时水中洗衣液的浓度为
(克/升),求
的值 ;
(Ⅱ)若投放个单位的洗衣液,则有效去污时间可达几分钟?
(本小题满分12分)在中,内角
所对的边分别为
,已知
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.
已知关于的不等式:
的整数解有且仅有一个值为2.
(1) 求整数的值;
(2 )已知,若
,求
的最大值