游客
题文

等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;

(1)如图(1),若A(0,1),B(2,0),求C点的坐标;
(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

解方程:
(1)
(2)

(本小题12分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.

(1)若b=5,则点A坐标是;
(2)在(1)的条件下,若OQ=8,求线段BQ的长;
(3)若点P在函数y=x2(x>0)的图象上,△BQP是等腰三角形且PQ=
求出点B的坐标.

(本小题13分)如图,抛物线y= -x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)

(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?

(本小题12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.

(1)求证:CD为⊙O的切线;
(2)求证:∠C=2∠DBE.
(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)

(本小题8分)一只不透明的袋子里共有4个球,其中3个白球,1个红球,它们除颜色外均相同.
(1)从袋子中随机摸出一个球是白球的概率是多少?
(2)从袋子中随机摸出一个球,不放回袋子,摇匀袋子后再摸一个球,请用列表或画树状图的方法,求出两次摸出的球都是白球的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号