(本小题12分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.
(1)若b=5,则点A坐标是 ;
(2)在(1)的条件下,若OQ=8,求线段BQ的长;
(3)若点P在函数y=x2(x>0)的图象上,△BQP是等腰三角形且PQ=
求出点B的坐标.
先化简,再求值: ,其中 满足: .
如图,抛物线 与 轴相交于点 和点 ,与 轴相交于点 ,作直线 .
(1)求抛物线的解析式;
(2)在直线 上方的抛物线上存在点 ,使 ,求点 的坐标;
(3)在(2)的条件下,点 的坐标为 ,点 在抛物线上,点 在直线 上.当以 , , , 为顶点的四边形是平行四边形时,请直接写出点 的坐标.
在等腰 和等腰 中, , ,将 绕点 逆时针旋转,连接 ,点 为线段 的中点,连接 , .
(1)如图1,当点 旋转到 边上时,请直接写出线段 与 的位置关系和数量关系;
(2)如图2,当点 旋转到 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)若 , ,在 绕点 逆时针旋转的过程中,当 时,请直接写出线段 的长.
如图,四边形 内接于 , 是直径, ,连接 ,过点 的直线与 的延长线相交于点 ,且 .
(1)求证:直线 是 的切线;
(2)若 , ,求 的长.
小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量 (本 与销售单价 (元 之间满足一次函数关系,三对对应值如下表:
销售单价 (元 |
12 |
14 |
16 |
每周的销售量 (本 |
500 |
400 |
300 |
(1)求 与 之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为 元 ,且 为整数),设每周销售该款笔记本所获利润为 元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?