游客
题文


(1)求的值。
(2)若,求的值。

科目 数学   题型 解答题   难度 中等
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:
(1)分别写出点A、B两点的坐标;
(2)作出△ABC关于坐标原点成中心对称的△A1B1C1
(3)作出点C关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A1B1C1的内部,请直接写出x的取值范围.

化简:

计算:|―3|―()+(-1)3

如图已知二次函数图象的顶点为原点, 直线的图象与该二次函数的图象交于点(8,8),直线与轴的交点为C,与y轴的交点为B.
(1)求这个二次函数的解析式与B点坐标;
(2)为线段上的一个动点(点不重合),过轴的垂线与这个二次函数的图象交于D点,与轴交于点E.设线段PD的长为,点的横坐标为t,求与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段上是否存在点,使得以点P、D、B为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.

某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡政策的实施,商场决定采取适当的降价措施。调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台。
(1)假设每台冰箱降价x元,商场每天销售这种冰箱y台,请写出y与x的函数关系式(不要求写自变量的范围)
(2)若每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数表达式(不要求写自变量的取值范围);
(3)商场要想在这种冰箱销售中每天赢利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(4)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号