(本小题满分13分)已知函数为自然对数的底数)
(1)求函数的最小值;
(2)若≥0对任意的x∈R恒成立,求实数a的值;
(文科)已知椭圆:
的上顶点为
,两个焦点为
、
,
为正三角形且周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆:
,若直线
与椭圆
只有一个公共点
,且直线
与圆
相切于点
;求
的最大值.
(理科)已知椭圆的离心率为
,定点
,椭圆短轴的端点是
,
,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
(文科)给定椭圆:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆
的“准圆”上的动点,过点
作椭圆的切线
交“准圆”于点
.
(ⅰ)当点为“准圆”与
轴正半轴的交点时,求直线
的方程并证明
;
(ⅱ)求证:线段的长为定值.
(理科)已知抛物线的焦点为
,过
的直线交
轴正半轴于点
,交抛物线于
两点,其中点
在第一象限.
(Ⅰ)求证:以线段为直径的圆与
轴相切;
(Ⅱ)若,
,
,求
的取值范围.
(文科)已知椭圆,
(1)求椭圆的离心率.
(2)设为原点,若点
在椭圆
上,点
在直线
上,且
,求直线
与圆
的位置关系,并证明你的结论.