如图,在
中,
°,
,
,
,
分别是
,
上的点,且
,
,将
沿
折起到
的位置,使
,如图
.
(Ⅰ)求证:平面
;
(Ⅱ)若是
的中点,求
与平面
所成角的大小;
(Ⅲ)点是线段
的靠近点
的三等分点,点
是线段
上的点,直线
过点
且垂直于平面
,求点
到直线
的距离的最小值.
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当弦AB被点P平分时,写出直线l的方程;
(2)当直线l的倾斜角为45º时,求弦AB的长.
如图,在四棱锥中,底面
是矩形,已知
,
(1)证明平面
;
(2)求异面直线与
所成的角的正切值;
(3)求四棱锥的体积。
已知直线经过两点A(2,1),B(6,3)
(1)求直线的方程
(2)圆C的圆心在直线上,并且与
轴相切于点(2,0),求圆C的方程
(3)若过B点向(2)中圆C引切线BS、BT,S、T分别是切点,求ST直线的方程.
如图所示,在直三棱柱中,
,∠ACB=90°,M是
的中点,N是
的中点
(Ⅰ)求证:MN∥平面;
(Ⅱ)求点到平面BMC的距离;
如图,为正方体,下面结论错误的是
A.![]() ![]() |
B.![]() |
C.平面ACC1A1⊥平面![]() |
D.异面直线![]() ![]() |