游客
题文

(本小题满分12分)广东某高中进行高中生歌唱比赛,在所有参赛成绩中随机抽取名学生的成绩,按成绩分组:第,第,第,第,第得到的频率分布直方图如图所示.现在组委会决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试.

(1)求组各应抽取多少人进入第二轮面试;
(2)学校决定在(1)中抽取的这6名学生中随机抽取2名学生接受考官D的面试,求第四组中至少一人被考官D面试的概率.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,已知椭圆Cy2=1,AB是四条直线x=±2,y=±1所围成的两个顶点.

(1)设P是椭圆C上任意一点,若mn,求证:动点Q(mn)在定圆上运动,并求出定圆的方程;
(2)若MN是椭圆C上两上动点,且直线OMON的斜率之积等于直线OAOB的斜率之积,试探求△OMN的面积是否为定值,说明理由.

经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|.
(1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;
(2)求该城市旅游日收益的最小值(万元).

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EFBDABEF.

(1)求证:BF∥平面ACE
(2)求证:BFBD.

在△ABC中,角ABC的对边分别为abc,且c=2,C=60°.
(1)求的值;
(2)若abab,求△ABC的面积.

已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为lx=2.
(1)求椭圆的标准方程;
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点FOM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号