某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健产品的收益与投资成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比. 已知投资1万元时两类产品的收益分别为万元和0.5万元.
(1)分别写出两类产品的收益与投资的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问,怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
已知椭圆 的左焦点为 ,离心率为 ,点M在椭圆上且位于第一象限,直线 被圆 截得的线段的长为 ,
(Ⅰ)求直线
的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点
在椭圆上,若直线
的斜率大于
,求直线
(
为原点)的斜率的取值范围.
已知数列
满足
(
),
,
,且
,
,
成等差数列.
(Ⅰ)求
的值和
的通项公式;
(Ⅱ)设
,
,求数列
的前
项和.
如图,在四棱柱 中,侧棱 , ,且点M和N分别为 的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的正弦值;
(Ⅲ)设
为棱
上的点,若直线
和平面
所成角的正弦值为
,求线段
的长
为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(Ⅰ)设
为事件"选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会"求事件
发生的概率;
(Ⅱ)设
为选出的4人中种子选手的人数,求随机变量
的分布列和数学期望.
已知函数
(Ⅰ)求
最小正周期;
(Ⅱ)求
在区间
上的最大值和最小值.