(本小题满分14分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
资 金 |
单位产品所需资金(百元) |
月资金供应量(百元) |
|
空调机 |
洗衣机 |
||
成 本 |
30 |
20 |
300 |
劳动力(工资) |
5 |
10 |
110 |
单位利润 |
6 |
8 |
|
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度
元计费,每月用电超过
度时,超过部分按每度
元计费,每月用电超过
度时,超过部分按每度
元计费.
(1)设每月用电度,应交电费
元,写出
关于
的函数;
(2)已知小王家第一季度缴费情况如下:
月份 |
1 |
2 |
3 |
合计 |
缴费金额 |
87元 |
62元 |
45元8角 |
194元8角 |
问:小王家第一季度共用了多少度电?
已知函数
(1)判断函数在
上的单调性,并用定义加以证明;
(2)若对任意,总存在
,使得
成立,求实数
的取值范围.
已知函数
(1)令,求
关于
的函数关系式及
的取值范围;
(2)求函数的值域,并求函数取得最小值时的的值.
已知函数是定义在
上的奇函数,当
时的解析式为
.
(1)求函数的解析式;
(2)求函数的零点.
设集合是函数
的定义域,集合
是函数
的值域.
(1)求集合;
(2)设集合,若集合
,求实数
的取值范围.