如图,椭圆的一个 焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点F的直线交椭圆于A、B两点,若直线
绕点F任意转动,恒有
, 求
的取值范围.
(本小题満分12分)
已知一条曲线上的每个点M到A(1,0)的距离减去它到y轴的距离差都是1.
(1)求曲线的方程;
(2)讨论直线y=kx+1(k∈R)与曲线的公共点个数
(本小题満分12分)设p :指数函数在R上是减函数;q:
。若p∨q是真命题,p∧q是假命题,求
的取值范围。
如果正△ABC中,D∈AB,E∈AC,向量,求以B,C为焦点且过点D,E的双曲线的离心
(本小题满分14分)一块边长为10的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积
与
的函数关系式,并求出函数的定义域.
(本小题满分14分)
如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M1