(本小题满分13分)如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4.
(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)试在平面CDE上确定点P,使点P到直线DC、DE的距离相等,且AP与平面BEF所成的角等于30°.
在中,角
所对的边分别为
,设
为
的面积,满足
(Ⅰ)求角的大小;
(Ⅱ)求的最大值.
已知函数,的部分图象如图所示.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递增区间.
设函数,曲线
过点P(1,0),且在P点处的切斜线率为2.
(1)求,
的值;
(2)证明:.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
其中
为常数.己知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得利润最大.
设△的内角
的对边分别为
,且
.
(1)求角的大小;
(2)若,
,求a,c,的值.