(本小题满分12分)根据调查,某学校开设了“街舞”、“围棋”、“武术”三个社团,三个社团参加的人数如下表所示:
社团 |
街舞 |
围棋 |
武术 |
人数 |
320 |
240 |
200 |
社团抽取的同学8人。
(Ⅰ) 求的值和从“围棋”社团抽取的同学的人数;
(Ⅱ)若从“围棋”社团抽取的同学中选出2人担任该社团活动监督的职务,已知“围棋”社团被抽取的同学中有2名女生,求至少有1名女同学被选为监督职务的概率。
济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人浏览这四个景点的概率分别是0.3,0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。
(1)求=0对应的事件的概率;
(2)求的分布列及数学期望。
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有个圆盘依其半径大小,大的在下,小的在上套在
柱上,现要将套在
柱上的盘换到
柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子
可供使用.
现用表示将
个圆盘全部从
柱上移到
柱上所至少需要移动的次数,回答下列问题:
(1)写出并求出
(2)记求和
(其中
表示所有的积
的和)
(3)证明:
已知函数
(1)求函数的单调区间;
(2)为何值时,方程
有三个不同的实根.
已知函数 ,讨论 的单调性。
某地有 四人先后感染了甲型 流感,其中只有 到过疫区. 肯定是受 感染的.对于 ,因为难以断定他是受 还是受 感染的,于是假定他受 和受 感染的概率都是 .同样也假定 受 和 感染的概率都是 .在这种假定之下, 中直接受 感染的人数 就是一个随机变量.写出 的分布列(不要求写出计算过程),并求 的均值(即数学期望).