(本小题满分12分)已知椭圆:()的长半轴长为2,离心率为,左右焦点分别为,.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于,两点,与以,为直径的圆交于,两点,且满足,求直线的方程.
(本小题12分)已知函数,函数的最小值为. (Ⅰ)求; (Ⅱ)是否存在实数,,同时满足以下条件:①;②当的定义域为时,值域为.若存在,求出,的值;若不存在,说明理由.
(本小题12分)已知函数的定义域是R,对任意实数x,y,均有,且当时,. (Ⅰ)证明:在R上是增函数; (Ⅱ)判断的奇偶性,并证明; (Ⅲ)若,求不等式的解集.
(本小题12分)已知函数,. (Ⅰ)求函数g(x)的值域; (Ⅱ)解方程:.
(本小题12分)已知函数. (Ⅰ)判断的奇偶性,并证明; (Ⅱ)求使的的取值范围.
(本小题12分)化简求值:(Ⅰ); (Ⅱ).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号