已知数列是等差数列,
(
).
(Ⅰ)判断数列是否是等差数列,并说明理由;
(Ⅱ)如果,
(
为常数),试写出数列
的通项公式;
(Ⅲ)在(Ⅱ)的条件下,若数列得前
项和为
,问是否存在这样的实数
,使
当且仅当
时取得最大值.若存在,求出
的取值范围;若不存在,说明理由.
已知函数.(1)若x∈R,求f(x)的单调递增区间;(2)若x∈[0,
]时,f(x)的最大值为4,求a的值,并指出这时x的值
(本题满分15分)已知数列{}中
,
(n≥2,
),数列
,满足
(
)(1)求证数列{
}是等差数列;(2)求数列{
}中的最大项与最小项,并说明理由(3)记
…
,求
.
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,
,
,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为
,
,
.(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量
的期望
已知函数,若方程
有且只有两个相异根0和2,且
(1)求函数
的解析式。(2)已知各项不为1的数列{an}满足
,求数列通项an。(3)如果数列{bn}满足
,求证:当
时,恒有
成立。
已知,函数
,在
是一个单调函数。
(1)试问在
的条件下,在
能否是单调递减函数?说明理由。
(2)若在
上是单调递增函数,求实数a的取值范围。
(3)设且
,比较
与
的大小。