如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.
(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
已知两个连体的正方形(有两条边在同一条直线上)在正方形网格上的位置如图所示,请你把它分割后,拼接成一个新的正方形. (要求:在正方形网格图中用实线画出拼接成的新正方形且新正方形的顶点在网格的格点上,不写作法).
某展览大厅有3个入口和2个出口,其示意图如下. 参观者从任意一个入口进入,参观结束后从任意一个出口离开.
(1)用树状图表示,小明从进入到离开,对于入口和出口的选择有多少种不同的结果?
(2)小明从入口1进入并从出口A离开的概率是多少?
(1)解方程:+1=
;
(2)解不等式组:,并写出它的自然数解.
(1)计算:-(
)-1-
(2)先化简,再求值:÷(x-
),其中x=
-1
如图,一条直线与反比例函数y1=的图象交于A(1,5),B(5,n)两点,与x轴交于D点, AC⊥x轴,垂足为C.
(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标.
(2)如图乙,若点E在线段AD上运动,连结CE,作∠CEF=45°,EF交AC于F点.
①试说明△CDE∽△EAF;
②当△ECF为等腰三角形时,请求出F点的坐标.