(本小题满分10分)【选修4-4:坐标系与参数方程】
在直角坐标系中,半圆C的参数方程为
(
为参数,
),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线OM:
与半圆C的交点为O、P,与直线
的交点为Q,求线段PQ的长.
已知向量p=(an,2n),向量q=(2n+1,-an+1),n∈N*,向量p与q垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.
(1)若OM=,求PM的长;
(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2
=
b.
(1)求证:a,b,c成等差数列;
(2)若∠B=60°,b=4,求△ABC的面积.
已知函数f(x)=2sin xcos x+cos 2x(x∈R).
(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;
(2)若θ为锐角,且f=
,求tan θ的值.
已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,).
(1)求sin 2α-tan α的值;
(2)若函数f(x)=cos(x-α)cos α-sin(x-α)sin α,求函数y=f
-2f2(x)在区间
上的值域.