(本题7分)如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.
9 |
a |
b |
c |
-5 |
1 |
|
|
… |
|
(1)可求得c=_______,第2006个格子中的数为___________;
(2)如果x、y为前三个格子中的任意两个数,那么所有的∣x-y∣的和可以通过计算
∣9-a∣+∣a-9∣+∣9-b∣+∣b-9∣+∣a-b∣+∣b-a∣得到,求所有的∣x-y∣的和;
(3)前m个格子中所填整数之和是否可能为2014?若能,求m的值;若不能,请说出理由.
计算:
在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N .
(1)写出点C的坐标;
(2)求证:MD = MN;
(3)连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明.
已知:在四边形ABCD中,AC = BD,AC与BD交于点O,∠DOC = 60°.
(1)当四边形ABCD是平行四边形时(如图1),证明AB + CD = AC;
(2)当四边形ABCD是梯形时(如图2),AB∥CD,线段AB、CD和线段AC之间的数量关系是____;
(3)如图3,四边形ABCD中,AB与CD不平行,结论AB + CD = AC是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
若正整数a、b、c满足方程a2+b2=c2 ,则称这一组正整数(a、b、c)为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:
根据以上规律,回答以下问题:
(1)商高数的三个数中,有几个偶数,几个奇数?
(2)写出各数都大于30的两组商高数。
(3)用两个正整数m、n(m>n)表示一组商高数,并证明你的结论。
已知关于x的一元二次方程x2+4x+m-1=0。
(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;
(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值。