游客
题文

(本题12分)如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m–4)2+n2–8n=–16,过C点作∠ECF分别交线段AB、OB于E、F两点.

(1)求A点的坐标.
(2)若OF+BE=AB,求证:CF=CE.
(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE–EF的值不变;‚OF+AE+EF的值不变.其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.

科目 数学   题型 解答题   难度 较难
知识点: 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.

(1)求证:AC平分∠BAD;
(2)若CD=3,AC=,求⊙O 的半径长.

如图,在平面直角坐标系中,反比例函数>0)的图象和矩形ABCD的第一象限,AD平行于轴,且AB=2,AD=4,点A的坐标为(2,6) .

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

在所给的5×5方格中,每个小正方形的边长都是1.按要求画平行四边形,
(1)在图甲中,画出一个平行四边形,使其有一个内角为45°且它的四个顶点在方格的顶点上.
(2)在图乙中,画出一个平行四边形(非特殊的平行四边形),使其周长为整数且它的四个顶点在方格的顶点上.
(3)在图丙中,画出一个平行四边形,使其面积为6且它的四个顶点以及对角线交点都在方格的顶点上.

将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.
(1)从中随机抽取一张卡片,求该卡片正面的数字是奇数的概率;
(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是3的倍数的概率是多少?请用树状图或列表法加以说明.

先化简,再求值:,其中

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号