游客
题文

如图,在平面直角坐标系中,反比例函数>0)的图象和矩形ABCD的第一象限,AD平行于轴,且AB=2,AD=4,点A的坐标为(2,6) .

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

科目 数学   题型 解答题   难度 较难
知识点: 平行线分线段成比例
登录免费查看答案和解析
相关试题

解方程:

计算:

如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.
求(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后 再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.

春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭到霜冻灾害,需采取预防措施.下图是气象台某天发布的该地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系,5时至8时的图象满足函数.请根据图中信息,解答下列问题:
(1)求次日5时的气温.
(2)求二次函数的解析式.
(3)判断次日是否需要采取防霜措施,并说明理由.

如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号